Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Journal Article

A Study of the Rear Seat Occupant Safety using a 10-Year-Old Child Dummy in the New Car Assessment Program

2008-04-14
2008-01-0511
The National Highway Traffic Safety Administration (NHTSA) conducted a total of 28 frontal crashes in the New Car Assessment Program (NCAP) involving the 10-year-old child Hybrid III dummy. The 10-year-old child dummy was in the rear seat. All types of vehicles (passenger cars, sport utility vehicles, vans and pick-up trucks) were tested to assess the effect of restraint systems such as booster and pretensioner on the rear seat occupant. In this study, the readings of the 10-year-old child dummy in rear-left and rear-right seat positions are examined. The authors apply a possible 5 star rating system, based on head and chest readings of the 10-year-old dummy. The paper also assesses the safety performance of rear seat occupants and the effect of the restraint systems on a child in the rear seat. This paper suggests that a star rating for rear seat occupants is independent of the present ratings for the driver and front adult passenger in NCAP.
Technical Paper

A Study of the IIHS Frontal Pole Impact Test

2008-04-14
2008-01-0507
According to the Fatality Analysis Reporting System (FARS, 1995-2004), over 20 percent of fatal frontal crashes are into fixed narrow objects such as trees and utility poles in real world crashes. The Insurance Institute for Highway Safety (IIHS) has studied the frontal pole impact test since 2005, conducting a series of tests using passenger cars that are rated “Good” from the IIHS frontal offset test. Passenger cars were impacted into a 10-inch-diameter rigid pole at 64-kph. The alignment of the pole along the centerline of the vehicles in frontal impact was varied to study the influence on dummy injury metrics. This paper evaluates the frontal center pole test conducted by the IIHS. The IIHS tests 21 crashes impacted by the rigid pole using 5 vehicle models with two dummies in the front seat. Intrusions and dummy readings were reviewed according to the frontal offset rating criteria of the IIHS for structural performance and injury measurement.
Technical Paper

Development of a Computer Model to Predict Aortic Rupture Due to Impact Loading

2001-11-01
2001-22-0007
Aortic injuries during blunt thoracic impacts can lead to life threatening hemorrhagic shock and potential exsanguination. Experimental approaches designed to study the mechanism of aortic rupture such as the testing of cadavers is not only expensive and time consuming, but has also been relatively unsuccessful. The objective of this study was to develop a computer model and to use it to predict modes of loading that are most likely to produce aortic ruptures. Previously, a 3D finite element model of the human thorax was developed and validated against data obtained from lateral pendulum tests. The model included a detailed description of the heart, lungs, rib cage, sternum, spine, diaphragm, major blood vessels and intercostal muscles. However, the aorta was modeled as a hollow tube using shell elements with no fluid within, and its material properties were assumed to be linear and isotropic.
Technical Paper

Development of a Finite Element Model of the Human Abdomen

2001-11-01
2001-22-0004
Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50th percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray

2001-11-01
2001-22-0016
The principal focus of this study was the measurement of relative brain motion with respect to the skull using a high-speed, biplanar x-ray system and neutral density targets (NDTs). A suspension fixture was used for testing of inverted, perfused, human cadaver heads. Each specimen was subjected to multiple tests, either struck at rest using a 152-mm-diameter padded impactor face, or stopped against an angled surface from steady-state motion. The impacts were to the frontal and occipital regions. An array of multiple NDTs was implanted in a double-column scheme of 5 and 6 targets, with 10 mm between targets in each column and 80 mm between columns. These columns were implanted in the temporoparietal and occipitoparietal regions. The impacts produced peak resultant accelerations of 10 to 150 g, and peak angular accelerations between 1000 and 8000 rad/s2. For all but one test, the peak angular speeds ranged from 17 to 22 rad/s.
Technical Paper

Effect of Vehicle Front End Profiles Leading to Pedestrian Secondary Head Impact to Ground

2013-11-11
2013-22-0005
Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models.
Technical Paper

Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model

1999-10-10
99SC22
Relative motion between the brain and skull may explain many types of brain injury such as intracerebral hematomas due to bridging veins rupture [1] and cerebral contusions. However, no experimental methods have been developed to measure the magnitude of this motion. Consequently, relative motion between the brain and skull predicted by analytical tools has never been validated. In this study, radio opaque markers were placed in the skull and neutral density markers were placed in the brain in two vertical columns in the occipitoparietal and temporoparietal regions. A bi-planar, high-speed x-ray system was used to track the motion of these markers. Due to limitations in current technology to record the x-ray image on high-speed video cameras, only low- speed (﹤ 4m/s) impact data were available.
Technical Paper

High Rate Mechanical Properties of the Hybrid Iii and Cadaveric Lumbar Spines in Flexion and Extension

1999-10-10
99SC18
In a previous study by Demetropoules et al., (1998), it was shown that both cadaveric and Hybrid III lumbar spines exhibit loading rate dependency when loaded in a quasi-static mode up to a velocity of 100 mm/s. In these tests, the Hybrid III lumbar spines were generally found to have higher stiffnesses than the human lumbar spines, except in compression. This is probably due to the fact that muscle loading was not simulated when testing the human spines. Additionally, the speed previously used to test the spines was less than that typically seen in automotive crash environment. The purpose of this study was to use a high-rate testing machine to establish the flexion and extension stiffnesses of the human lumbar spine with simulated extensor muscle tone. Two Hybrid III lumbar spines were used to develop the test methodology and to obtain the response of the Hybrid III lumbar spines.
Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Technical Paper

Below Knee Impact Responses using Cadaveric Specimens

2004-11-01
2004-22-0004
Knee injuries represent about 10% of all injuries suffered during car crashes. Efforts to assess the injury risk to the posterior cruciate ligament (PCL) have been based on a study available in the literature (Viano et al., 1978), in which only two of the five knees tested had PCL ruptures. The aims of the current study were to repeat the study with a higher number of samples, study the effects of other soft tissues on knee response, and assess the adequacy of the experimental setup for the identification of a PCL tolerance. A total of 14 knees were tested using a high-speed materials testing machine. Eight were intact knees (with the patella and all the muscular and ligamentous structures), three were PCL-only knees (patella and all the muscular and ligamentous structures other than the PCL removed), and the last three were PCL-only knees with the tibia protected from bending fracture.
Technical Paper

Motion Analysis of the Mandible during Low-Speed, Rear-End Impacts using High-Speed X-rays

2005-11-09
2005-22-0004
There has been much debate over “whiplash”-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rear-end impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

2005-11-09
2005-22-0005
Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

A Study of the Response of the Human Cadaver Head to Impact

2007-10-29
2007-22-0002
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Tensile Loading at Varying Strain Rates

2006-11-06
2006-22-0025
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. However, the mechanical properties of the pia-arachnoid complex and its influence on the overall response of the brain have not been well characterized. Consequently, finite element (FE) brain models have tended to oversimplify the response of the pia-arachnoid complex, possibly resulting in a loss of accuracy in the model predictions. The aim of this study was to determine, experimentally, the material properties of the pia-arachnoid complex under quasi-static and dynamic loading conditions. Specimens of the pia-arachnoid complex were obtained from the parietal and temporal regions of freshly slaughtered bovine subjects with the specimen orientation recorded. Single-stroke, uniaxial quasi-static and dynamic tensile experiments were performed at strain-rates of 0.05, 0.5, 5 and 100 s-1 (n = 10 for each strain rate group).
Technical Paper

Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat

2006-11-06
2006-22-0022
Complete validation of any finite element (FE) model of the human brain is very difficult due to the lack of adequate experimental data. However, more animal brain injury data, especially rat data, obtained under well-defined mechanical loading conditions, are available to advance the understanding of the mechanisms of traumatic brain injury. Unfortunately, internal response of the brain in these experimental studies could not be measured. The aim of this study was to develop a detailed FE model of the rat brain for the prediction of intracranial responses due to different impact scenarios. Model results were used to elucidate possible brain injury mechanisms. An FE model, consisting of more than 250,000 hexahedral elements with a typical element size of 100 to 300 microns, was developed to represent the brain of a rat. The model was first validated locally against peak brain deformation data obtained from nine unique dynamic cortical deformation (vacuum) tests.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
X